注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

蒋高明的博客

中国科学院植物研究所研究员,从事植物生态学研究

 
 
 

日志

 
 
关于我

联合国教科文组织人与生物圈中国国家委员会副秘书长、中国科学院植物研究所首席研究员、博士生导师、山东省人民政府泰山学者、中国科学院研究生院教授、联合国教科文组织人与生物圈计划城市组委员、中国生态学会副秘书长、中国生物多样性保护基金会副秘书长、中国环境文化促进会理事、中国植物学会植物生态学专业委员会委员、北京植物学会常务理事、青年工作委员会主任、中国生态系统研究网络生物分中心学术委员、中国科学院植物研究所学位委员会委员、

网易考拉推荐

英国自然杂志报道抗除草剂转基因作物有利于杂草竞争(英文)  

2013-08-22 09:21:43|  分类: 自然与社会 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2013年8月16日,英国《自然》杂志发表一篇题为“Genetically modified crops pass benefits to weeds”(转基因作物向杂草传递益处)的新闻,称“Herbicide resistance could confer an advantage on plants in the wild”(抗杀草剂特性可给野生植物增添优势)。该文对中国复旦大学研究人员发表在《New Phytol.》的论文( (http://dx.doi.org/10.1111/nph.12428)进行评论,能够在自然杂志发表,说明国际社会对抗杀草剂特性的蔓延还是相当关注的,因为抗生素滥用的后果人们是印象深刻的。 


中国科学家的研究为转基因作物研发提供了一个重要线索,当人类利用了转基因的“利”,其弊端如何防控?利弊如何权衡?


英国自然杂志报道抗除草剂转基因作物有利于杂草竞争(英文) - 蒋高明 - 蒋高明的博客


Genetically modified crops pass benefits to weeds

Herbicide resistance could confer an advantage on plants in the wild.

Jane Qiu

16 August 2013


Weedy rice can pick up transgenes from genetically modified crop rice through cross-pollination.

Xiao Yang

Article tools

Print

Email

Rights & Permissions

Share/bookmark

A genetic-modification technique used widely to make crops herbicide resistant has been shown to confer advantages on a weedy form of rice, even in the absence of the herbicide. The finding suggests that the effects of such modification have the potential to extend beyond farms and into the wild.

Several types of crops have been genetically modified to be resistant to glyphosate, an herbicide first marketed under the trade name Roundup. This glyphosate resistance enables farmers to wipe out most weeds from the fields without damaging their crops.

Glyphosate inhibits plant growth by blocking an enzyme known as EPSP synthase, which is involved in the production of certain amino acids and other molecules that account for as much as 35% of a plant’s mass. The genetic-modification technique — used, for instance, in the Roundup Ready crops made by the biotechnology giant Monsanto, based in St Louis, Missouri — typically involves inserting genes into a crop’s genome to boost EPSP-synthase production. The genes are usually derived from bacteria that infect plants.

Related stories

Monsanto drops GM in Europe

Hunt for mystery GM wheat hots up

GM crop use makes minor pests major problem

More related stories

The extra EPSP synthase lets the plant withstand the effects of glyphosate. Biotechnology labs have also attempted to use genes from plants rather than bacteria to boost EPSP-synthase production, in part to exploit a loophole in US law that facilitates regulatory approval of organisms carrying transgenes not derived from bacterial pests.

Few studies have tested whether transgenes such as those that confer glyphosate resistance can — once they get into weedy or wild relatives through cross-pollination — make those plants more competitive in survival and reproduction. “The traditional expectation is that any sort of transgene will confer disadvantage in the wild in the absence of selection pressure, because the extra machinery would reduce the fitness,” says Norman Ellstrand, a plant geneticist at the University of California in Riverside.  

But now a study led by Lu Baorong, an ecologist at Fudan University in Shanghai, challenges that view: it shows that a weedy form of the common rice crop, Oryza sativa, gets a significant fitness boost from glyphosate resistance, even when glyphosate is not applied.

In their study, published this month in New Phytologist1, Lu and his colleagues genetically modified the cultivated rice species to overexpress its own EPSP synthase and cross-bred the modified rice with a weedy relative.

The team then allowed the cross-bred offspring to breed with one another, creating second-generation hybrids that were genetically identical to one another except in the number of copies of the gene encoding EPSP synthase. As expected, those with more copies expressed higher levels of the enzyme and produced more of the amino acid tryptophan than their unmodified counterparts.

The researchers also found that the transgenic hybrids had higher rates of photosynthesis, grew more shoots and flowers and produced 48–125% more seeds per plant than non-transgenic hybrids — in the absence of glyphosate.

Making weedy rice more competitive could exacerbate the problems it causes for farmers around the world whose plots are invaded by the pest, Lu says.

“If the EPSP-synthase gene gets into the wild rice species, their genetic diversity, which is really important to conserve, could be threatened because the genotype with the transgene would outcompete the normal species,” says Brian Ford-Lloyd, a plant geneticist at the University of Birmingham, UK. “This is one of the most clear examples of extremely plausible damaging effects [of GM crops] on the environment.”

The study also challenges the public perception that genetically modified crops carrying extra copies of their own genes are safer than those containing genes from microorganisms. “Our study shows that this is not necessarily the case,” says Lu.

The finding calls for a rethinking of future regulation of genetically modified crops, some researchers say. “Some people are now saying that biosafety regulation can be relaxed because we have a high level of comfort with two decades of genetic engineering,” says Ellstrand. “But the study shows that novel products still need careful evaluation.”

Nature

doi:10.1038/nature.2013.13517

References

Wang, W. et al. New Phytol. http://dx.doi.org/10.1111/nph.12428 (2013).




本文引用地址:http://blog.sciencenet.cn/blog-475-718762.html
  评论这张
 
阅读(50)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017